Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin.

نویسندگان

  • Marco Martina
  • Alexia E Metz
  • Bruce P Bean
چکیده

We characterized the kinetics and pharmacological properties of voltage-activated potassium currents in rat cerebellar Purkinje neurons using recordings from nucleated patches, which allowed high resolution of activation and deactivation kinetics. Activation was exceptionally rapid, with 10-90% activation in about 400 mus at +30 mV, near the peak of the spike. Deactivation was also extremely rapid, with a decay time constant of about 300 mus near -80 mV. These rapid activation and deactivation kinetics are consistent with mediation by Kv3-family channels but are even faster than reported for Kv3-family channels in other neurons. The peptide toxin BDS-I had very little blocking effect on potassium currents elicited by 100-ms depolarizing steps, but the potassium current evoked by action potential waveforms was inhibited nearly completely. The mechanism of inhibition by BDS-I involves slowing of activation rather than total channel block, consistent with the effects described in cloned Kv3-family channels and this explains the dramatically different effects on currents evoked by short spikes versus voltage steps. As predicted from this mechanism, the effects of toxin on spike width were relatively modest (broadening by roughly 25%). These results show that BDS-I-sensitive channels with ultrafast activation and deactivation kinetics carry virtually all of the voltage-dependent potassium current underlying repolarization during normal Purkinje cell spikes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of neuronal sodium channels by the sea anemone peptide BDS-I.

Blood-depressing substance I (BDS-I), a 43 amino-acid peptide from sea anemone venom, is used as a specific inhibitor of Kv3-family potassium channels. We found that BDS-I acts with even higher potency to modulate specific types of voltage-dependent sodium channels. In rat dorsal root ganglion (DRG) neurons, 3 μM BDS-I strongly enhanced tetrodotoxin (TTX)-sensitive sodium current but weakly inh...

متن کامل

Properties and functional role of voltage-dependent potassium channels in dendrites of rat cerebellar Purkinje neurons.

We characterized the properties and functional roles of voltage-dependent potassium channels in the dendrites of Purkinje neurons studied in rat cerebellar slices. Using outside-out patches formed <or=250 microm away from the soma, we found that depolarization-activated potassium channels were present at high density throughout the dendritic tree. Currents required relatively large depolarizati...

متن کامل

Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells.

The ability of cells to generate an appropriate spike output depends on a balance between membrane depolarizations and the repolarizing actions of K(+) currents. The high-voltage-activated Kv3 class of K(+) channels repolarizes Na(+) spikes to maintain high frequencies of discharge. However, little is known of the ability for these K(+) channels to shape Ca(2+) spike discharge or their ability ...

متن کامل

Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons.

Acutely dissociated cell bodies of mouse Purkinje neurons spontaneously fired action potentials at approximately 50 Hz (25 degrees C). To directly measure the ionic currents underlying spontaneous activity, we voltage-clamped the cells using prerecorded spontaneous action potentials (spike trains) as voltage commands and used ionic substitution and selective blockers to isolate individual curre...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 2007